Thursday, 19 October 2017

Moving Average Array


Gleitende durchschnittliche Vorhersage Einführung. Wie Sie vielleicht vermuten, sehen wir uns einige der primitivsten Ansätze zur Prognose an. Aber hoffentlich sind dies zumindest eine lohnende Einführung in einige der Computing-Fragen im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir fortfahren, indem wir am Anfang beginnen und mit Moving Average Prognosen arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist mit gleitenden durchschnittlichen Prognosen vertraut, unabhängig davon, ob sie glauben, dass sie sind. Alle College-Studenten machen sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, wo Sie vier Tests während des Semesters haben werden. Nehmen wir an, Sie haben eine 85 bei Ihrem ersten Test. Was würdest du für deinen zweiten Test-Score vorhersagen Was denkst du, dein Lehrer würde für deinen nächsten Test-Score voraussagen Was denkst du, deine Freunde können für deinen nächsten Test-Score voraussagen Was denkst du, deine Eltern können für deinen nächsten Test-Score voraussagen All das Blabbing, das du mit deinen Freunden und Eltern machen kannst, sie und deinem Lehrer sind sehr wahrscheinlich zu erwarten, dass du etwas im Bereich der 85 bekommst, die du gerade bekommen hast. Nun, jetzt können wir davon ausgehen, dass trotz Ihrer Selbst-Förderung zu Ihren Freunden, Sie über-schätzen Sie sich selbst und Figur können Sie weniger für den zweiten Test zu studieren und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmert zu gehen Erwarten Sie auf Ihrem dritten Test zu bekommen Es gibt zwei sehr wahrscheinlich Ansätze für sie eine Schätzung zu entwickeln, unabhängig davon, ob sie es mit Ihnen teilen wird. Sie können sich selbst sagen, "dieser Kerl ist immer bläst Rauch über seine smarts. Er wird noch 73, wenn er glücklich ist. Vielleicht werden die Eltern versuchen, mehr unterstützend zu sein und zu sagen, quotWell, so weit hast du eine 85 und eine 73 bekommen, also vielleicht solltest du auf eine (85 73) 2 79 kommen. Ich weiß nicht, vielleicht, wenn du weniger feiern musst Und werent wedelte den Wiesel überall auf den Platz und wenn du anfing, viel mehr zu studieren, könntest du eine höhere Punktzahl bekommen. Diese beiden Schätzungen belegen tatsächlich durchschnittliche Prognosen. Die erste nutzt nur Ihre aktuellste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als eine gleitende durchschnittliche Prognose mit einer Periode von Daten bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass all diese Leute, die auf deinem großen Verstand zerschlagen sind, dich irgendwie verärgert haben und du entscheidest, den dritten Test aus deinen eigenen Gründen gut zu machen und eine höhere Punktzahl vor deinem Quoten zu setzen. Sie nehmen den Test und Ihre Partitur ist eigentlich ein 89 Jeder, auch Sie selbst, ist beeindruckt. So, jetzt haben Sie die endgültige Prüfung des Semesters kommen und wie üblich fühlen Sie sich die Notwendigkeit, goad jeder in die Herstellung ihrer Vorhersagen darüber, wie youll auf den letzten Test zu tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich kannst du das Muster sehen. Was glaubst du, ist die genaueste Pfeife während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von deiner entfremdeten Halbschwester namens Whistle während wir arbeiten. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst stellen wir die Daten für eine dreistellige gleitende durchschnittliche Prognose vor. Der Eintrag für Zelle C6 sollte jetzt sein. Du kannst diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie sich der Durchschnitt über die aktuellsten historischen Daten bewegt, aber genau die drei letzten Perioden verwendet, die für jede Vorhersage verfügbar sind. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngsten Vorhersage zu entwickeln. Dies unterscheidet sich definitiv von dem exponentiellen Glättungsmodell. Ive enthalten die quotpast Vorhersagen, weil wir sie in der nächsten Webseite verwenden, um die Vorhersagegültigkeit zu messen. Jetzt möchte ich die analogen Ergebnisse für eine zweistufige gleitende durchschnittliche Prognose vorstellen. Der Eintrag für Zelle C5 sollte jetzt sein. Du kannst diese Zellformel in die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast-Vorhersagen für illustrative Zwecke und für die spätere Verwendung in der Prognose-Validierung enthalten. Einige andere Dinge, die wichtig sind, um zu bemerken. Für eine m-Periode gleitende durchschnittliche Prognose werden nur die m aktuellsten Datenwerte verwendet, um die Vorhersage zu machen. Nichts anderes ist nötig Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie quotpast Vorhersagen quot, bemerken, dass die erste Vorhersage in Periode m 1 auftritt. Beide Themen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der beweglichen Mittelfunktion. Jetzt müssen wir den Code für die gleitende Mittelprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden gelten, die Sie in der Prognose und dem Array von historischen Werten verwenden möchten. Sie können es in der beliebigen Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) Als Single Declaring und Initialisierung von Variablen Dim Item als Variant Dim Zähler als Integer Dim Akkumulation als Single Dim HistoricalSize als Integer Initialisierung von Variablen Counter 1 Akkumulation 0 Bestimmen der Größe von Historical Array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulation der entsprechenden Anzahl der aktuellsten bisher beobachteten Werte Akkumulation Akkumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie wollen die Funktion auf der Kalkulationstabelle positionieren, damit das Ergebnis der Berechnung erscheint, wo es wie folgt aussieht. Lets sich vorstellen, wir haben eine Reihe von ganzen Zahlen wie folgt: Der Durchschnitt wird mit der folgenden Formel A (1n) xi (mit I 1 bis n). Also: x1n x2n. Xnn Wir teilen den aktuellen Wert durch die Anzahl der Werte und addieren das vorherige Ergebnis zum zurückgegebenen Wert. Die Reduziermethode Signatur ist die reduzierte Rückruffunktion die folgenden Parameter: p. Ergebnis der vorherigen Berechnung c. Aktueller Wert (aus dem aktuellen Index) i. Aktuelle Array-Elemente Indexwert a. Die aktuelle reduzierte Array Die zweite reduziert Parameter ist der Standardwert. (Wird verwendet, wenn das Array leer ist). So wird die durchschnittliche reduzierte Methode sein: Wenn Sie es vorziehen, können Sie eine separate Funktion erstellen und dann einfach auf die Rückrufmethoden-Signatur verweisen oder den Array-Prototyp direkt verarbeiten. Es ist möglich, den Wert jedes Mal zu teilen, wenn die reduzierte Methode aufgerufen wird. Oder noch besser Mit der zuvor definierten Array. protoype. sum () - Methode, optimiere den Prozess, den ich die Division nur einmal anrufe :) Dann auf jedem Array-Objekt des Gültigkeitsbereichs: NB: ein leeres Array mit Rückkehr ein NaN Wunsch ist mehr korrekt als 0 in meinem Standpunkt und kann bei konkreten Anwendungsfällen nützlich sein. AnalogFrame hat eine Methode cov, um paarweise Kovarianzen unter den Serien im DataFrame zu berechnen, wobei auch NAnull-Werte ausgeschlossen sind. Unter der Annahme, dass die fehlenden Daten zufällig fehlen, ergibt sich eine Schätzung für die Kovarianzmatrix, die unvoreingenommen ist. Für viele Anwendungen ist diese Schätzung jedoch nicht akzeptabel, da die geschätzte Kovarianzmatrix nicht als positiv halb-definitiv garantiert ist. Dies könnte zu geschätzten Korrelationen mit absoluten Werten führen, die größer als eins sind und eine nicht invertierbare Kovarianzmatrix. Siehe Schätzung der Kovarianzmatrizen für weitere Details. DataFrame. cov unterstützt auch ein optionales Minperiod-Keyword, das die erforderliche Mindestanzahl von Beobachtungen für jedes Spaltenpaar angibt, um ein gültiges Ergebnis zu erhalten. Die im Fenster verwendeten Gewichte werden durch das Schlüsselwort wintype angegeben. Die Liste der anerkannten Typen sind: boxcar triang blackman hamming bartlett parzen bohman blackmanharris nuttall barthann kaiser (benötigt beta) gaussian (benötigt std) generalgaussian (benötigt Macht, Breite) slepian (braucht Breite). Beachten Sie, dass das Kastenfenster dem Mittelwert entspricht (). Für einige Fensterfunktionen müssen zusätzliche Parameter angegeben werden: Für. sum () mit einem Wintype. Es gibt keine Normalisierung an den Gewichten für das Fenster. Wenn man benutzerdefinierte Gewichte von 1, 1, 1 erhält, ergibt sich ein anderes Ergebnis als die Gewichte von 2, 2, 2. zum Beispiel. Beim Überschreiten eines Wintyps anstatt explizit die Gewichte zu spezifizieren, sind die Gewichte bereits normalisiert, so dass das größte Gewicht 1 ist. Im Gegensatz dazu ist die Art der. mean () - Berechnung so, dass die Gewichte in Bezug aufeinander normalisiert werden. Gewichte von 1, 1, 1 und 2, 2, 2 ergeben das gleiche Ergebnis. Time-aware Rolling Neu in Version 0.19.0. Neu in der Version 0.19.0 sind die Möglichkeit, einen Offset (oder Cabrio) an eine. rolling () - Methode zu übergeben und es auf der Grundlage des übergebenen Zeitfensters variable Fenster zu erzeugen. Für jeden Zeitpunkt sind alle vorangegangenen Werte innerhalb der angegebenen Zeit delta enthalten. Dies kann besonders nützlich für einen nicht regelmäßigen Zeitfrequenzindex sein. Dies ist ein regelmäßiger Frequenzindex. Die Verwendung eines Integer-Fensterparameters funktioniert, um die Fensterfrequenz zu rollen. Die Angabe eines Offsets ermöglicht eine intuitivere Spezifikation der Rollfrequenz. Mit einem nicht regelmäßigen, aber immer noch monotonen Index, das Rollen mit einem ganzzahligen Fenster gibt keine spezielle Berechnung. Die Verwendung der Zeit-Spezifikation erzeugt variable Fenster für diese spärlichen Daten. Darüber hinaus erlauben wir nun einen optionalen Parameter, um eine Spalte (und nicht die Standardeinstellung des Index) in einem DataFrame anzugeben. Time-aware Rolling vs. Resampling Mit. rolling () mit einem zeitbasierten Index ähnelt dem Resampling. Sie betreiben und führen reduktive Operationen auf zeitindizierten Pandasobjekten durch. Bei Verwendung von. rolling () mit einem Offset. Der Versatz ist ein Zeit-Dreieck. Nehmen Sie ein Rückwärts-in-Zeit-Fenster und aggregieren alle Werte in diesem Fenster (einschließlich der Endpunkt, aber nicht der Startpunkt). Dies ist der neue Wert zu diesem Zeitpunkt im Ergebnis. Dies sind variable Fenster im Zeitraum für jeden Punkt der Eingabe. Sie erhalten ein gleiches Ergebnis wie die Eingabe. Bei Verwendung von. resample () mit einem Offset. Konstruieren Sie einen neuen Index, der die Häufigkeit des Offsets ist. Für jeden Frequenz-Bin, Aggregat Punkte aus der Eingabe in einem Rückwärts-in-Zeit-Fenster, die in diesem bin. Das Ergebnis dieser Aggregation ist die Ausgabe für diesen Frequenzpunkt. Die Fenster sind im Größenbereich feste Größe. Ihr Ergebnis hat die Form einer regelmäßigen Frequenz zwischen dem Min und dem Maximum des ursprünglichen Eingabeobjekts. Zusammenfassen. Rolling () ist eine zeitbasierte Fensterbedienung, während. resample () eine frequenzbasierte Fensteroperation ist. Zentrieren von Windows Standardmäßig sind die Etiketten am rechten Rand des Fensters eingestellt, aber ein zentrales Schlüsselwort steht zur Verfügung, so dass die Etiketten in der Mitte eingestellt werden können. Binäre Fensterfunktionen cov () und corr () können bewegte Fensterstatistiken über zwei Serien oder eine beliebige Kombination von DataFrameSeries oder DataFrameDataFrame berechnen. Hier ist das Verhalten in jedem Fall: zwei Serien. Berechnen Sie die Statistik für die Paarung. DataFrameSeries. Berechnen Sie die Statistik für jede Spalte des DataFrame mit der übergebenen Serie und geben so ein DataFrame zurück. DataFrameDataFrame. Standardmäßig berechnen Sie die Statistik für passende Spaltennamen und geben ein DataFrame zurück. Wenn das Keyword-Argument paarweiseTrue übergeben wird, berechnet man die Statistik für jedes Spaltenpaar und gibt ein Panel zurück, dessen Elemente die betreffenden Termine sind (siehe nächster Abschnitt). Computing Rolling Paarweise Kovarianzen und Korrelationen In der Finanzdatenanalyse und anderen Bereichen it8217s gemeinsam, um Kovarianz und Korrelationsmatrizen für eine Sammlung von Zeitreihen zu berechnen. Oft ist man auch an Moving-Fenster-Kovarianz - und Korrelationsmatrizen interessiert. Dies kann getan werden, indem man das paarweise Schlüsselwort-Argument übergibt, das im Fall von DataFrame-Eingaben ein Panel liefert, dessen Elemente die Daten sind. Im Falle eines einzigen DataFrame-Arguments kann das paarweise Argument sogar weggelassen werden: Fehlende Werte werden ignoriert und jeder Eintrag wird mit den paarweise vollständigen Beobachtungen berechnet. Bitte beachten Sie die Kovarianz-Sektion für Einschränkungen, die mit dieser Methode zur Berechnung von Kovarianz - und Korrelationsmatrizen verbunden sind. Abgesehen davon, dass kein Fensterparameter vorhanden ist, haben diese Funktionen die gleichen Schnittstellen wie ihre. rolling-Pendants. Wie oben sind die Parameter, die sie alle akzeptieren: minperiods. Schwelle von Nicht-Null-Datenpunkten zu erfordern. Standardmäßig benötigt, um die Statistik zu berechnen. Es werden keine NaNs ausgegeben, sobald Minimalperioden Nicht-Null-Datenpunkte gesehen wurden. Center. Boolean, ob die Etiketten in der Mitte gesetzt werden sollen (Standard ist False) Die Ausgabe der. rolling - und. expanding-Methoden gibt kein NaN zurück, wenn es im aktuellen Fenster mindestens Minimalperioden gibt. Das unterscheidet sich von cumsum. Cumprod Cummax Und cummin Die NaN in der Ausgabe zurückgeben, wo ein NaN in der Eingabe angetroffen wird. Eine expandierende Fensterstatistik wird stabiler (und weniger reaktionsfähig) als sein Rollfenster, da die zunehmende Fenstergröße die relative Auswirkung eines einzelnen Datenpunktes verringert. Als Beispiel hierbei handelt es sich um die mittlere () Ausgabe für den vorherigen Zeitreihen-Datensatz: Exponentiell gewichtetes Fenster Ein verwandter Satz von Funktionen sind exponentiell gewichtete Versionen mehrerer der obigen Statistiken. Eine ähnliche Schnittstelle zu. rolling und. expanding wird durch die. ewm-Methode aufgerufen, um ein EWM-Objekt zu empfangen. Es werden eine Reihe von expandierenden EW (exponentiell gewichtete) Methoden bereitgestellt:

No comments:

Post a Comment